

Audit Report
Lyno AI
July 2025

Repository https://github.com/lyno-ai/lyno_presale

Commit 9aea015fa862fbdfee823c1874510eaab5832970

Files LynoPresale.sol

Audited by © cyberscope

LynoPresale Audit​ ​ ​ ​ ​ ​ 1

Table of Contents
Table of Contents​ 1
Risk Classification​ 4
Review​ 5

Audit Updates​ 5
Source Files​ 5

Overview​ 6
Multi-Stage Token Sale Functionality​ 6
Purchase Token Functionality​ 6
Token Claiming Functionality​ 7
Information Retrieval Functionality​ 7
Administrative and Safety Features​ 7

Findings Breakdown​ 8
Diagnostics​ 9

MVN - Misleading Variables Naming​ 11
Description​ 11
Recommendation​ 11

CR - Code Repetition​ 12
Description​ 12
Recommendation​ 12

CCR - Contract Centralization Risk​ 13
Description​ 13
Recommendation​ 13

DPI - Decimals Precision Inconsistency​ 14
Description​ 14
Recommendation​ 15

HV - Hardcoded Values​ 16
Description​ 16
Recommendation​ 16

IDI - Immutable Declaration Improvement​ 17
Description​ 17
Recommendation​ 17

IPC - Inconsistent Phase Change​ 18
Description​ 18
Recommendation​ 18

MEE - Missing Events Emission​ 19
Description​ 19
Recommendation​ 19

ODM - Oracle Decimal Mismatch​ 20
Description​ 20

LynoPresale Audit​ ​ ​ ​ ​ ​ 2

Recommendation​ 20
PPF - Pausable Purchase Functionality​ 21

Description​ 21
Recommendation​ 22

PECC - Potential Early Claim Concern​ 23
Description​ 23
Recommendation​ 24

POSD - Potential Oracle Stale Data​ 25
Description​ 25
Recommendation​ 25

PTAI - Potential Transfer Amount Inconsistency​ 27
Description​ 27
Recommendation​ 28

PPA - Pre-Configuration Purchase Allowance​ 29
Description​ 29
Recommendation​ 29

RAO - Redundant Arithmetic Operations​ 30
Description​ 30
Recommendation​ 30

RSP - Redundant Struct Property​ 31
Description​ 31
Recommendation​ 31

TCEC - Token Claiming Ensurance Concern​ 32
Description​ 32
Recommendation​ 33

TSI - Tokens Sufficiency Insurance​ 34
Description​ 34
Recommendation​ 34

UTPD - Unverified Third Party Dependencies​ 35
Description​ 35
Recommendation​ 35

L04 - Conformance to Solidity Naming Conventions​ 36
Description​ 36
Recommendation​ 36

L13 - Divide before Multiply Operation​ 37
Description​ 37
Recommendation​ 37

Functions Analysis​ 38
Inheritance Graph​ 39
Flow Graph​ 40
Summary​ 41
Disclaimer​ 42

LynoPresale Audit​ ​ ​ ​ ​ ​ 3

About Cyberscope​ 43

LynoPresale Audit​ ​ ​ ​ ​ ​ 4

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1.​ Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2.​ Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1.​ Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2.​ Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3.​ Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4.​ Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

LynoPresale Audit​ ​ ​ ​ ​ ​ 5

Review

Repository https://github.com/lyno-ai/lyno_presale

Commit 9aea015fa862fbdfee823c1874510eaab5832970

Audit Updates

Initial Audit 03 Jul 2025

Source Files

Filename SHA256

LynoPresale.sol a93f99f26b415678e00af3fbc5cc503496497d7159112ef284e8b8852ace

be21

LynoPresale Audit​ ​ ​ ​ ​ ​ 6

Overview
The LynoPresale contract manages a multi-stage token presale for the Lyno token,

supporting contributions in ETH, USDC, and USDT. It enables token purchases across

defined stages, each with specific pricing, bonus rates, and token allocations. The contract

incorporates security features like reentrancy protection, pausability, and ownership

controls. It also facilitates token claiming post-sale and supports Chainlink price feeds for

real-time ETH/USD conversion.

Multi-Stage Token Sale Functionality

The contract defines up to seven presale stages with the following customizable parameters

per stage:

●​ Stage Name
●​ Token Price (USD with 18 decimals)
●​ Bonus Percentage
●​ Token Allocation
●​ Tokens Sold
●​ Active Status

Only one stage can be active at a time. The owner can change stages using the

setStage function, ensuring orderly progression through the sale. The

setupDefaultStages function initializes the stages with predetermined values that

follow the community distribution plan.

Purchase Token Functionality

Buyers can participate in the presale using one of the three accepted currencies:

●​ ETH: The contract uses Chainlink’s ETH/USD price feed to convert ETH to USD.
●​ USDC / USDT: Tokens are transferred using SafeERC20 and normalized to 18

decimals.

Upon contribution:

●​ The token amount is calculated based on the current stage's price.
●​ A bonus is applied according to the stage’s bonus percentage.
●​ Token purchase stats are updated.
●​ ETH is immediately forwarded to the ethReceiver wallet.
●​ Contributions are tracked per user and token.

LynoPresale Audit​ ​ ​ ​ ​ ​ 7

The buyWithETH , buyWithUSDC , and buyWithUSDT functions each handle their

respective token logic securely and efficiently.

Token Claiming Functionality

The owner can enable token claiming using enableClaiming . Users who contributed

can then call claim to receive their purchased tokens. The function ensures:

●​ Claiming is enabled.
●​ The user has tokens to claim.
●​ The user has not already claimed.

Tokens are distributed using SafeERC20 , and each claim is recorded to prevent

double-claims.

Information Retrieval Functionality

The contract provides user-friendly views and stats to track presale progress:

●​ getCurrentStage : Returns details of the active stage.
●​ getContribution(user, token) : Shows user’s contribution in ETH, USDC,

or USDT.
●​ totalContributions(token) : Displays the total contributions for a given

token.
●​ getEthPrice : Returns the latest ETH/USD price using Chainlink’s oracle.

These functions are critical for building responsive and transparent frontend interfaces.

Administrative and Safety Features

●​ Ownership Control: Only the contract owner can:
○​ Set the Lyno token address
○​ Change presale stages
○​ Enable claiming
○​ Withdraw collected USDC/USDT tokens

●​ Pausing and Unpausing: The pause and unpause functions can disable or
resume purchases during emergencies.

●​ Reentrancy Protection: All sensitive external functions (e.g., buyWithETH ,
claim) use the nonReentrant modifier from OpenZeppelin's
ReentrancyGuard .

●​ Fund Safety: USDC and USDT funds are securely held and can be withdrawn only
by the owner using withdrawERC20 .

LynoPresale Audit​ ​ ​ ​ ​ ​ 8

Findings Breakdown

⬤ Critical 0

⬤ Medium 0

⬤ Minor / Informative 21

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 21 0 0 0

LynoPresale Audit​ ​ ​ ​ ​ ​ 9

Diagnostics
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ MVN Misleading Variables Naming Unresolved

⬤ CR Code Repetition Unresolved

⬤ CCR Contract Centralization Risk Unresolved

⬤ DPI Decimals Precision Inconsistency Unresolved

⬤ HV Hardcoded Values Unresolved

⬤ IDI Immutable Declaration Improvement Unresolved

⬤ IPC Inconsistent Phase Change Unresolved

⬤ MEE Missing Events Emission Unresolved

⬤ ODM Oracle Decimal Mismatch Unresolved

⬤ PPF Pausable Purchase Functionality Unresolved

⬤ PECC Potential Early Claim Concern Unresolved

⬤ POSD Potential Oracle Stale Data Unresolved

⬤ PTAI Potential Transfer Amount Inconsistency Unresolved

⬤ PPA Pre-Configuration Purchase Allowance Unresolved

LynoPresale Audit​ ​ ​ ​ ​ ​ 10

⬤ RAO Redundant Arithmetic Operations Unresolved

⬤ RSP Redundant Struct Property Unresolved

⬤ TCEC Token Claiming Ensurance Concern Unresolved

⬤ TSI Tokens Sufficiency Insurance Unresolved

⬤ UTPD Unverified Third Party Dependencies Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L13 Divide before Multiply Operation Unresolved

LynoPresale Audit​ ​ ​ ​ ​ ​ 11

MVN - Misleading Variables Naming

Criticality Minor / Informative

Location
LynoPresale.sol#L21

Status Unresolved

Description

Variables can have misleading names if their names do not accurately reflect the value they

contain or the purpose they serve. The contract uses some variable names that are too

generic or do not clearly convey the information stored in the variable. Misleading variable

names can lead to confusion, making the code more difficult to read and understand.

address public constant ETH_ADDRESS =

address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);

Recommendation

It's always a good practice for the contract to contain variable names that are specific and

descriptive. The team is advised to keep in mind the readability of the code.

LynoPresale Audit​ ​ ​ ​ ​ ​ 12

CR - Code Repetition

Criticality Minor / Informative

Location LynoPresale.sol#L212,247,280

Status Unresolved

Description

The contract contains repetitive code segments. There are potential issues that can arise

when using code segments in Solidity. Some of them can lead to issues like gas efficiency,

complexity, readability, security, and maintainability of the source code. It is generally a

good idea to try to minimize code repetition where possible.

function buyWithETH() external payable nonReentrant
whenNotPaused
function buyWithUSDC(uint256 amount) external nonReentrant
whenNotPaused
function buyWithUSDT(uint256 amount) external nonReentrant

whenNotPaused

Recommendation

The team is advised to avoid repeating the same code in multiple places, which can make

the contract easier to read and maintain. The authors could try to reuse code wherever

possible, as this can help reduce the complexity and size of the contract. For instance, the

contract could reuse the common code segments in an internal function in order to avoid

repeating the same code in multiple places.

LynoPresale Audit​ ​ ​ ​ ​ ​ 13

CCR - Contract Centralization Risk

Criticality Minor / Informative

Location LynoPresale.sol#L163,172,182,330,369,376

Status Unresolved

Description

The contract's functionality and behavior are heavily dependent on external parameters or

configurations. While external configuration can offer flexibility, it also poses several

centralization risks that warrant attention. Centralization risks arising from the dependence

on external configuration include Single Point of Control, Vulnerability to Attacks,

Operational Delays, Trust Dependencies, and Decentralization Erosion.

function setToken(address _lynoToken) external onlyOwner
function enableClaiming() external onlyOwner
function setStage(uint8 newStageId) external onlyOwner
function withdrawERC20(address token) external onlyOwner
function pause() external onlyOwner
function unpause() external onlyOwner

Recommendation

To address this finding and mitigate centralization risks, it is recommended to evaluate the

feasibility of migrating critical configurations and functionality into the contract's codebase

itself. This approach would reduce external dependencies and enhance the contract's

self-sufficiency. It is essential to carefully weigh the trade-offs between external

configuration flexibility and the risks associated with centralization.

LynoPresale Audit​ ​ ​ ​ ​ ​ 14

DPI - Decimals Precision Inconsistency

Criticality Minor / Informative

Location LynoPresale.sol#L321

Status Unresolved

Description

The decimals field of a contract's ERC20 token can be used to specify the number of

decimal places that the token uses. For example, if decimals are set to 8 , it means that

the smallest unit of the token is 0.00000001 , and if decimals are set to 18 , it means

that the smallest unit of the token is 0.000000000000000001 .

However, there is an inconsistency in the way that the decimals field is handled in some

ERC20 contracts. The ERC20 specification does not specify how the decimals field should

be implemented, and as a result, some contracts use different precision numbers.

This inconsistency can cause problems when interacting with these contracts, as it is not

always clear how the decimals field should be interpreted. For example, if a contract

expects the decimals field to be 18 digits, but the contract being interacted with uses 8

digits, the result of the interaction may not be what was expected.

function claim() external nonReentrant {
 //...
 uint256 amount = purchasedTokens[msg.sender];
 //...
 IERC20(lynoToken).safeTransfer(msg.sender, amount);
 //...
}

LynoPresale Audit​ ​ ​ ​ ​ ​ 15

Recommendation

To avoid these issues, it is important to carefully review the implementation of the decimals

field of the underlying tokens. The team is advised to normalize each decimal to one single

source of truth. A recommended way is to scale all the decimals to the greatest token's

decimal. Hence, the contract will not lose precision in the calculations.

The following example depicts 3 tokens with different decimals precision.

ERC20 Decimals

Token 1 6

Token 2 9

Token 3 18

All the decimals could be normalized to 18 since it represents the ERC20 token with the

greatest digits.

LynoPresale Audit​ ​ ​ ​ ​ ​ 16

HV - Hardcoded Values

Criticality Minor / Informative

Location LynoPresale.sol#L183,206,253,286

Status Unresolved

Description

The contract contains multiple instances where numeric values are directly hardcoded into

the code logic rather than being assigned to constant variables with descriptive names.

Hardcoding such values can lead to several issues, including reduced code readability,

increased risk of errors during updates or maintenance, and difficulty in consistently

managing values throughout the contract. Hardcoded values can obscure the intent behind

the numbers, making it challenging for developers to modify or for users to understand the

contract effectively.

require(newStageId <= 6, "Invalid stage ID");
return uint256(price) * 10**10;
uint256 normalizedAmount = amount * 10**12;

Recommendation

It is recommended to replace hardcoded numeric values with variables that have

meaningful names. This practice improves code readability and maintainability by clearly

indicating the purpose of each value, reducing the likelihood of errors during future

modifications. Additionally, consider using constant variables which provide a reliable way

to centralize and manage values, improving gas optimization throughout the contract.

LynoPresale Audit​ ​ ​ ​ ​ ​ 17

IDI - Immutable Declaration Improvement

Criticality Minor / Informative

Location LynoPresale.sol#L79,80,81

Status Unresolved

Description

The contract declares state variables that their value is initialized once in the constructor

and are not modified afterwards. The immutable is a special declaration for this kind of

state variables that saves gas when it is defined.

usdcAddress
usdtAddress
ethReceiver

Recommendation

By declaring a variable as immutable, the Solidity compiler is able to make certain

optimizations. This can reduce the amount of storage and computation required by the

contract, and make it more gas-efficient.

LynoPresale Audit​ ​ ​ ​ ​ ​ 18

IPC - Inconsistent Phase Change

Criticality Minor / Informative

Location LynoPresale.sol#L182

Status Unresolved

Description

The contract has the function setStage allowing only the owner to set the new stage of

presale. However there are several inconsistencies of how the contract is handling the

setting of stage.

Specifically:

●​ The stage can be set without following the intended order.

●​ The stage can be changed to a previous stage that has already been completed.

●​ The stage can be changed without being complete.

●​ If a stage is completed this function must be called otherwise the user will not be

able to buy tokens.

function setStage(uint8 newStageId) external onlyOwner {
 require(newStageId <= 6, "Invalid stage ID");
 require(newStageId != currentStageId, "Already in this
stage");
 stages[currentStageId].active = false;
 stages[newStageId].active = true;
 emit StageChanged(currentStageId, newStageId);
 currentStageId = newStageId;
}

Recommendation

The team is advised to use a more automated and in sequence approach to handle the

change of phase. This could be achieved by handling the phase change duing the purchase

of the tokens with the proper conditions to ensure that operations run as intended.

LynoPresale Audit​ ​ ​ ​ ​ ​ 19

MEE - Missing Events Emission

Criticality Minor / Informative

Location LynoPresale.sol#L163,330

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

function setToken(address _lynoToken) external onlyOwner
function withdrawERC20(address token) external onlyOwner

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

LynoPresale Audit​ ​ ​ ​ ​ ​ 20

ODM - Oracle Decimal Mismatch

Criticality Minor / Informative

Location LynoPresale.sol#L206

Status Unresolved

Description

The contract relies on data retrieved from an external Oracle to make critical calculations.

However, the contract does not include a verification step to align the decimal precision of

the retrieved data with the precision expected by the contract’s internal calculations. This

mismatch in decimal precision can introduce substantial errors in calculations involving

decimal values.

function getEthPrice() public view returns (uint256) {
 (, int256 price, , ,) = ethPriceFeed.latestRoundData();
 //...
 return uint256(price) * 10**10;
}

Recommendation

The team is advised to retrieve the decimals precision from the Oracle API in order to

proceed with the appropriate adjustments to the internal decimals representation.

LynoPresale Audit​ ​ ​ ​ ​ ​ 21

PPF - Pausable Purchase Functionality

Criticality Minor / Informative

Location LynoPresale.sol#L212,247,280,369

Status Unresolved

Description

The contract owner is able to pause the purchasing of tokens by using the pause function.

This will not allow users to purchase tokens. Additionally the owner is able to pause the

purchases by setting the current stage in a complete one as described in the IPC

section.

function buyWithETH() external payable nonReentrant
whenNotPaused
...
function buyWithUSDC(uint256 amount) external nonReentrant
whenNotPaused
...
function buyWithUSDT(uint256 amount) external nonReentrant
whenNotPaused
...
function pause() external onlyOwner {
 _pause();
}

LynoPresale Audit​ ​ ​ ​ ​ ​ 22

Recommendation

The team should carefully manage the private keys of the owner’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing

the contract admin functions.

Temporary Solutions:

These measurements do not decrease the severity of the finding

●​ Introduce a time-locker mechanism with a reasonable delay.

●​ Introduce a multi-signature wallet so that many addresses will confirm the action.

●​ Introduce a governance model where users will vote about the actions.

Permanent Solution:

●​ Renouncing the ownership, which will eliminate the threats but it is non-reversible.

LynoPresale Audit​ ​ ​ ​ ​ ​ 23

PECC - Potential Early Claim Concern

Criticality Minor / Informative

Location LynoPresale.sol#L172,312

Status Unresolved

Description

The contract allows the owner to use the enableClaiming function allowing users to

claim their purchased tokens. However it is possible that the function is triggered before the

end of the presale and at any phase. This creates potential inconsistencies in the normal

order of the contract's operations.

Specifically:

●​ The contract will hold unsold tokens while the users will be able to claim the

purchased ones.

●​ Users that claim their token can still purchase more without a way to receive them

since they can only claim tokens once. This may probably result in unrecoverable

tokens

●​ Users may use their purchased tokens to create pools of undesirable liquidity ratios

in decentralized exchanges before the presale ends.

function enableClaiming() external onlyOwner {
 require(lynoToken != address(0), "Token not set");
 claimingEnabled = true;
 emit ClaimingEnabled();
}
...
function claim() external nonReentrant {
 //...
 require(!hasClaimed[msg.sender], "Already claimed");
 //...
 IERC20(lynoToken).safeTransfer(msg.sender, amount);
}

LynoPresale Audit​ ​ ​ ​ ​ ​ 24

Recommendation

It is recommended that the team creates the mechanisms needed to ensure that the

claiming of tokens can only happen after the ending of the presale. This can be achieved by

implementing a time mechanism to ensure that the processes are in order.

LynoPresale Audit​ ​ ​ ​ ​ ​ 25

POSD - Potential Oracle Stale Data

Criticality Minor / Informative

Location LynoPresale.sol#L202

Status Unresolved

Description

The contract relies on retrieving price data from an oracle. However, it lacks proper checks

to ensure the data is not stale. The absence of these checks can result in outdated price

data being trusted, potentially leading to significant financial inaccuracies.

function getEthPrice() public view returns (uint256) {
 (, int256 price, , ,) = ethPriceFeed.latestRoundData();
 //...
}

Recommendation

To mitigate the risk of using stale data, it is recommended to implement checks on the

round and period values returned by the oracle's data retrieval function. The value

indicating the most recent round or version of the data should confirm that the data is

current. Additionally, the time at which the data was last updated should be checked

against the current interval to ensure the data is fresh. For example, consider defining a

threshold value, where if the difference between the current period and the data's last

update period exceeds this threshold, the data should be considered stale and discarded,

raising an appropriate error.

For contracts deployed on Layer-2 solutions, an additional check should be added to verify

the sequencer's uptime. This involves integrating a boolean check to confirm the sequencer

is operational before utilizing oracle data. This ensures that during sequencer downtimes,

any transactions relying on oracle data are reverted, preventing the use of outdated and

potentially harmful data.

LynoPresale Audit​ ​ ​ ​ ​ ​ 26

By incorporating these checks, the smart contract can ensure the reliability and accuracy of

the price data it uses, safeguarding against potential financial discrepancies and enhancing

overall security.

LynoPresale Audit​ ​ ​ ​ ​ ​ 27

PTAI - Potential Transfer Amount Inconsistency

Criticality Minor / Informative

Location LynoPresale.sol#L271,304

Status Unresolved

Description

The transfer() and transferFrom() functions are used to transfer a specified

amount of tokens to an address. The fee or tax is an amount that is charged to the sender

of an ERC20 token when tokens are transferred to another address. According to the

specification, the transferred amount could potentially be less than the expected amount.

This may produce inconsistency between the expected and the actual behavior.

The following example depicts the diversion between the expected and actual amount.

Tax Amount Expected Actual

No Tax 100 100 100

10% Tax 100 100 90

IERC20(usdcAddress).safeTransferFrom(msg.sender, address(this),
amount);
...
IERC20(usdtAddress).safeTransferFrom(msg.sender, address(this),

amount);

LynoPresale Audit​ ​ ​ ​ ​ ​ 28

Recommendation

The team is advised to take into consideration the actual amount that has been transferred

instead of the expected.

It is important to note that an ERC20 transfer tax is not a standard feature of the ERC20

specification, and it is not universally implemented by all ERC20 contracts. Therefore, the

contract could produce the actual amount by calculating the difference between the

transfer call.

 Actual Transferred Amount = Balance After Transfer - Balance

Before Transfer

LynoPresale Audit​ ​ ​ ​ ​ ​ 29

PPA - Pre-Configuration Purchase Allowance

Criticality Minor / Informative

Location LynoPresale.sol#L163,212,247,280

Status Unresolved

Description

The contract allows users to purchase tokens before critical configurations are set.

Specifically, the setToken function can be used after users use the buy functions. While

this does not cause any inconsistencies in the buy functions, it may erode user trust by

allowing purchases before critical configurations are in place.

function setToken(address _lynoToken) external onlyOwner {
 require(_lynoToken != address(0), "Invalid token address");
 require(lynoToken == address(0), "Token already set");
 lynoToken = _lynoToken;
}

function buyWithETH() external payable nonReentrant
whenNotPaused
function buyWithUSDC(uint256 amount) external nonReentrant
whenNotPaused
function buyWithUSDT(uint256 amount) external nonReentrant

whenNotPaused

Recommendation

The team could implement a check to ensure that critical configurations have been set

before the users are allowed to purchase tokens.

LynoPresale Audit​ ​ ​ ​ ​ ​ 30

RAO - Redundant Arithmetic Operations

Criticality Minor / Informative

Location LynoPresale.sol#L219,222

Status Unresolved

Description

In buyWithETH function ethInUSD is calculated by multiplying the msg.value

with the current eth price and then dividing with PRECISION . However in the next step,

to calculate the baseTokens the function multiplies ethInUSD with PRECISION

and then divides with the current stage's price. These redundant operation increase the

code complexity and gas costs.

uint256 ethInUSD = (msg.value * ethPrice) / PRECISION;
uint256 baseTokens = (ethInUSD * PRECISION) / stage.price;

Recommendation

The team should restructure the function to ensure that there are no redundant calculations

to enhance code optimization and efficiency.

LynoPresale Audit​ ​ ​ ​ ​ ​ 31

RSP - Redundant Struct Property

Criticality Minor / Informative

Location LynoPresale.sol#L49,187,190

Status Unresolved

Description

 Stage struct has the property active . This property is used to check which is the

current active stage. However, the pick of stage during purchase is handled by the

currentStageId which is updated every time the stage changes, therefore the

active property does not provide any additional value. Additionally, during the purchase

functions the contract performs a check to ensure that stage.active is true. This

check is also redundant since the current stage will always have the property active as

true.

struct Stage {
 //...
 bool active;
}
function setStage(uint8 newStageId) external onlyOwner {
 //...
 stages[currentStageId].active = false;
 stages[newStageId].active = true;
 //...
 currentStageId = newStageId;
}
function buyWithETH() external payable nonReentrant
whenNotPaused {
 //...
 Stage storage stage = stages[currentStageId];
 require(stage.active, "Current stage not active");
 //...
}

Recommendation

The team is advised to remove redundancies to ensure that the code is optimised in terms

of gas costs and readable.

LynoPresale Audit​ ​ ​ ​ ​ ​ 32

TCEC - Token Claiming Ensurance Concern

Criticality Minor / Informative

Location LynoPresale.sol#L172,237,315,330

Status Unresolved

Description

The contract does not ensure that users will be able to claim their purchased tokens. This is

due to the enabling of claiming not being an automated action and instead is a function that

can only be used by the owner.

function enableClaiming() external onlyOwner {
 require(lynoToken != address(0), "Token not set");
 claimingEnabled = true;
 emit ClaimingEnabled();
}
...
function claim() external nonReentrant {
 //...
 require(!hasClaimed[msg.sender], "Already claimed");
 //...
}

Instead the owner is able to receive rewards during purchase in case of ETH or by using the

withdrawERC20 function in case of tokens. This means that the owner can receive the

contracts funds before users can ensure that they can receive their purchased tokens.

function buyWithETH() external payable nonReentrant
whenNotPaused {
 (bool sent,) = payable(ethReceiver).call{value:
msg.value}("");
 require(sent, "ETH transfer failed");
}
...
function withdrawERC20(address token) external onlyOwner

LynoPresale Audit​ ​ ​ ​ ​ ​ 33

Recommendation

The team should develop a more automated and less centralized approach for the claiming

of tokens. A potential solution could be an introduction of a sofcap/hardcap for when users

or owner are able to claim their tokens or funds respectively. Automated processes will

ensure that users will not depend on the actions of the owner to claim their purchased

tokens. Additionally, to enhance trust the owner should also be able to claim their funds

only after the enabling of claiming for the users.

LynoPresale Audit​ ​ ​ ​ ​ ​ 34

TSI - Tokens Sufficiency Insurance

Criticality Minor / Informative

Location LynoPresale.sol#L321

Status Unresolved

Description

The lynoTokens need to be provided from an external source. While external

administration can provide flexibility, it introduces a dependency on the administrator's

actions, which can lead to various issues and centralization risks. For example users are

able to purchase tokens without being ensured that that they will receive them during claim.

function claim() external nonReentrant {
 //...
 IERC20(lynoToken).safeTransfer(msg.sender, amount);
 //...
}

Recommendation

It is recommended to consider implementing a more decentralized and automated

approach for handling the contract tokens. One possible solution is to send the tokens

during the token initialization. If the contract guarantees the process it can enhance its

reliability, security, and participant trust, ultimately leading to a more successful and

efficient process.

LynoPresale Audit​ ​ ​ ​ ​ ​ 35

UTPD - Unverified Third Party Dependencies

Criticality Minor / Informative

Location LynoPresale.sol#L202,271,304,321,335

Status Unresolved

Description

The contract uses an external contract in order to determine the transaction's flow. The

external contract is untrusted. As a result, it may produce security issues and harm the

transactions.

(, int256 price, , ,) = ethPriceFeed.latestRoundData();
IERC20(usdcAddress).safeTransferFrom(msg.sender, address(this),
amount);
IERC20(usdtAddress).safeTransferFrom(msg.sender, address(this),
amount);
IERC20(lynoToken).safeTransfer(msg.sender, amount);

Recommendation

The contract should use a trusted external source. A trusted source could be either a

commonly recognized or an audited contract. The pointing addresses should not be able to

change after the initialization.

LynoPresale Audit​ ​ ​ ​ ​ ​ 36

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location LynoPresale.sol#L163

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1.​ Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2.​ Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3.​ Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4.​ Use indentation to improve readability and structure.

5.​ Use spaces between operators and after commas.

6.​ Use comments to explain the purpose and behavior of the code.

7.​ Keep lines short (around 120 characters) to improve readability.

address _lynoToken

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.​

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions.

https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions
https://docs.soliditylang.org/en/stable/style-guide.html#naming-conventions

LynoPresale Audit​ ​ ​ ​ ​ ​ 37

L13 - Divide before Multiply Operation

Criticality Minor / Informative

Location LynoPresale.sol#L219,222,223,256,257,289,290

Status Unresolved

Description

It is important to be aware of the order of operations when performing arithmetic

calculations. This is especially important when working with large numbers, as the order of

operations can affect the final result of the calculation. Performing divisions before

multiplications may cause loss of prediction.

uint256 baseTokens = (normalizedAmount * PRECISION) /
stage.price
uint256 bonusTokens = (baseTokens * stage.bonusPercentage) /

100

Recommendation

To avoid this issue, it is recommended to carefully consider the order of operations when

performing arithmetic calculations in Solidity. It's generally a good idea to use parentheses

to specify the order of operations. The basic rule is that the multiplications should be prior

to the divisions.

LynoPresale Audit​ ​ ​ ​ ​ ​ 38

Functions Analysis

Contract Type Bases

 Function Name Visibility Mutability Modifiers

LynoPresale Implementation Ownable,
Pausable,
ReentrancyG
uard

 Public️ ✓ Ownable

 setupDefaultStages Private ✓

 setToken External️ ✓ onlyOwner

 enableClaiming External️ ✓ onlyOwner

 setStage External️ ✓ onlyOwner

 getEthPrice Public️ -️

 buyWithETH External️ Payable nonReentrant
whenNotPause
d

 buyWithUSDC External️ ✓ nonReentrant
whenNotPause
d

 buyWithUSDT External️ ✓ nonReentrant
whenNotPause
d

 claim External️ ✓ nonReentrant

 withdrawERC20 External️ ✓ onlyOwner

 getCurrentStage External️ -️

 pause External️ ✓ onlyOwner

 unpause External️ ✓ onlyOwner

 getContribution External️ -️

 totalContributions External️ -️

LynoPresale Audit​ ​ ​ ​ ​ ​ 39

Inheritance Graph

LynoPresale Audit​ ​ ​ ​ ​ ​ 40

Flow Graph

LynoPresale Audit​ ​ ​ ​ ​ ​ 41

Summary
Lyno AI contract implements a presale mechanism. This audit investigates security issues,

business logic concerns and potential improvements.

LynoPresale Audit​ ​ ​ ​ ​ ​ 42

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a TAC blockchain cybersecurity company that was founded with the vision

to make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

	Table of Contents
	
	Risk Classification
	Review
	Audit Updates
	Source Files

	Overview
	Multi-Stage Token Sale Functionality
	Purchase Token Functionality
	Token Claiming Functionality
	Information Retrieval Functionality
	Administrative and Safety Features

	Findings Breakdown
	Diagnostics
	MVN - Misleading Variables Naming
	Description
	Recommendation

	CR - Code Repetition
	Description
	Recommendation

	
	CCR - Contract Centralization Risk
	Description
	Recommendation

	
	DPI - Decimals Precision Inconsistency
	Description
	
	Recommendation

	
	HV - Hardcoded Values
	Description
	Recommendation

	
	IDI - Immutable Declaration Improvement
	Description
	Recommendation

	
	IPC - Inconsistent Phase Change
	Description
	Recommendation

	
	MEE - Missing Events Emission
	Description
	Recommendation

	
	ODM - Oracle Decimal Mismatch
	Description
	Recommendation

	
	PPF - Pausable Purchase Functionality
	Description
	
	Recommendation

	
	PECC - Potential Early Claim Concern
	Description
	
	Recommendation

	
	POSD - Potential Oracle Stale Data
	Description
	Recommendation

	
	PTAI - Potential Transfer Amount Inconsistency
	Description
	
	Recommendation

	
	PPA - Pre-Configuration Purchase Allowance
	Description
	Recommendation

	
	RAO - Redundant Arithmetic Operations
	Description
	Recommendation

	
	RSP - Redundant Struct Property
	Description
	Recommendation

	TCEC - Token Claiming Ensurance Concern
	Description
	
	Recommendation

	
	TSI - Tokens Sufficiency Insurance
	Description
	Recommendation

	
	UTPD - Unverified Third Party Dependencies
	Description
	Recommendation

	
	L04 - Conformance to Solidity Naming Conventions
	Description
	Recommendation

	
	L13 - Divide before Multiply Operation
	Description
	Recommendation

	Functions Analysis
	Inheritance Graph
	Flow Graph
	Summary
	Disclaimer
	About Cyberscope

